
Scalable Library for Eigenvalue Problem Computations

http://www.grycap.upv.es/slepc

Hands-On Exercises for SLEPc

September 2010
Intended for use with version 3.1 of SLEPc

These exercises introduce application development in SLEPc, the Scalable
Library for Eigenvalue Problem Computations. A basic knowledge of PETSc
is assumed. The first exercise (exercise 0) is just a guided tour on how to
get started compiling and running programs. Exercises 1, 2, 3, and 4 are
intended to cover most of the basic SLEPc functionality. The rest of the
exercises illustrate more advanced features. All the example programs used
in the exercises are included in the SLEPc distribution and are also
available at its web site.

Exercise 0: Hello World
Exercise 1: Standard Symmetric Eigenvalue Problem
Exercise 2: Standard Non-Symmetric Eigenvalue Problem
Exercise 3: Generalized Eigenvalue Problem Stored in a File
Exercise 4: Singular Value Decomposition
Exercise 5: Problem without Explicit Matrix Storage
Exercise 6: Parallel Execution
Exercise 7: Use of Deflation Subspaces
Exercise 8: Quadratic Eigenvalue Problem

For reference, detailed information on usage of SLEPc and PETSc may be
found at the following links:

SLEPc on-line documentation

PETSc on-line documentation

Exercise 0: Hello World
This exercise shows how to build and run a simple example program with
SLEPc.
Note: The description below related to directories and the use of the
PETSC_ARCH variable will be different in the case of a prefix-based installation.

Compiling

SLEPc needs the following environment variables to be set:

SLEPC_DIR - the location of SLEPc
PETSC_DIR - the location of PETSc
PETSC_ARCH - the architecture being used

Make sure that you have them correctly set.

Like in PETSc, a makefile is necessary to compile a SLEPc program. Paste
this simple example into a file named makefile in your working directory:

hello: hello.o chkopts
 -${CLINKER} -o hello hello.o ${SLEPC_LIB}
 ${RM} hello.o

include ${SLEPC_DIR}/conf/slepc_common

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Also place the following source code into a file named "hello.c" in the same
directory:

static char help[] = "Simple Hello World example program in SLEPc\n";

#include "slepceps.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc, char **argv)
{
 int ierr;

 SlepcInitialize(&argc,&argv,(char*)0,help);
 ierr = PetscPrintf(PETSC_COMM_WORLD,"Hello world\n");CHKERRQ(ierr);
 ierr = SlepcFinalize();CHKERRQ(ierr);
 return 0;
}

Compile the program with the following command:

% make hello

Source Code Details

Examine the source code of the sample program. The following comments
will help you understand the code thoroughly.

Header File: All SLEPc programs must include a header file with all the
necessary definitions. This file is typically slepceps.h (the include file for
the EPS component), although in this simple example the file slepc.h

(base SLEPc header) would be enough.
Note: SLEPc header files automatically include some PETSc header files.

Library Initialization: All SLEPc programs must begin with a call to
SlepcInitialize, which in turn initializes PETSc and MPI. Similarly, at
the end of the program SlepcFinalize must be called for library cleanup.

Input/Output: In this example, we do input/output via a call to a PETSc
function, PetscPrintf. Remember that in parallel programs input/output
cannot be done simply via C standard library functions. Note that in SLEPc
programs we can freely use any PETSc function.

Error Checking: All SLEPc routines return an integer indicating whether an
error has occurred during the call. The PETSc macro CHKERRQ checks the
value of ierr and calls the PETSc error handler upon error detection.
CHKERRQ(ierr) should be placed after all function calls to enable a
complete error traceback. Also, the __FUNCT__ macro should be redefined
before each user function so that the error handler can help us locate the
error.

Running the Program

SLEPc programs are executed as any other MPI program. Note that this
typically differs from one system to another. To run the program with only
one processor, in some systems you can launch it as a normal program:

% hello

but in other systems this would not work. Check the documentation of your
system. In IBM SP systems, you should use the poe command as in

% poe hello

or

% poe hello -procs 4

for executing with more than one processor. Other MPI implementations
require the mpirun command to launch the applications

% mpirun -np 4 hello

In SLEPc (and PETSc) there are a lot of options (run-time parameters) to
control program behavior. These options are usually equivalent to function
calls, so the user can test its effect without changing the source code (this
will be illustrated in the next exercises). To show which options are available
in a program use:

% hello -help

Support for Debugging and Complex Numbers

The support for debugging capabilities, complex scalar arithmetic, and other
features is managed by SLEPc and PETSc by means of different
architectures, represented by different values of the PETSC_ARCH variable.
In a given system, you can typically find several versions of SLEPc and
PETSc, each of them built with different configuration options. For instance,
suppose the following values are available:

rs6000_sp_O: built with compiler optimization
rs6000_sp_g: built with debugging support
rs6000_sp_O_complex: optimized with complex scalars
rs6000_sp_g_complex: debug with complex scalars

Note: In order to learn about the particular architectures available in your
system, type ls $SLEPC_DIR. There should be a subdirectory for each
allowed value of PETSC_ARCH.

When using an architecture with support for complex scalars, all scalar
values are complex instead of real. Try compiling the example program for
complex numbers:

% make PETSC_ARCH=rs6000_sp_O_complex hello

When using the debug versions some options are available to support
debugging. For example

% hello -start_in_debugger

opens the program in a debugger stopped at the SlepcInitialize
function.

Other useful options are: -info to get informative messages about
progress of the calculations, -malloc_info to print memory usage at end
of run, -log_trace [filename] to get a full trace of the execution (in a
file), -malloc_dump to list memory blocks not freed at the end of the
program, and -log_summary to get a summary including performance
results.

Exercise 1: Standard Symmetric Eigenvalue Problem
This example solves a standard symmetric eigenproblem Ax=λx, where A is the
matrix resulting from the discretization of the Laplacian operator in 1 dimension
by centered finite differences.

 | 2 -1 0 0 0 0 |
 |-1 2 -1 0 0 0 |
 A = | 0 -1 2 -1 0 0 |

 | 0 0 -1 2 -1 0 |
 | 0 0 0 -1 2 -1 |
 | 0 0 0 0 -1 2 |

Compiling

Copy the file ex1.c [plain text] to the working directory and add these lines
to the makefile

ex1: ex1.o chkopts
 -${CLINKER} -o ex1 ex1.o ${SLEPC_LIB}
 ${RM} ex1.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Build the executable with the command

% make ex1

Note for Fortran users: Example ex1 is also available in Fortran ex1f.F
[plain text].

Running the Program

In order to run the program for a problem of order 50, type the following

% ex1 -n 50

You should get an output similar to this

1-D Laplacian Eigenproblem, n=50

 Number of iterations of the method: 7
 Solution method: krylovschur

 Number of requested eigenvalues: 1
 Stopping condition: tol=1e-07, maxit=100
 Number of converged eigenpairs: 1

 k ||Ax-kx||/||kx||
 ----------------- ------------------
 3.996207 2.60398e-08

Source Code Details

Examine the source code of the sample program and locate the function
calls mentioned in the following comments.

The Options Database: All the PETSc functionality related to the options
database is available in SLEPc. This allows the user to input control data at
run time very easily. In this example, the function PetscOptionsGetInt is
used to check whether the user has provided a command line option to set
the value of n, the problem dimension. If so, the variable n is set
accordingly; otherwise, n remains unchanged.

Vectors and Matrices: Usage of matrices and vectors in SLEPc is exactly
the same as in PETSc. The user can create a new parallel or sequential
matrix, A, with subroutine MatCreate, where the matrix format can be
specified at runtime. The example creates a matrix, sets the nonzero values
with MatSetValues and then assembles it.

Solving the Eigenvalue Problem: Usage of eigensolvers is very similar to
other kinds of solvers provided by PETSc. After creating the matrix, the
problem is solved by means of an EPS object (Eigenvalue Problem Solver)
via the following sequence of function calls:

EPSCreate(MPI_Comm comm,EPS *eps);
EPSSetOperators(EPS eps,Mat A,Mat B);
EPSSetProblemType(EPS eps,EPSProblemType type);
EPSSetFromOptions(EPS eps);
EPSSolve(EPS eps);
EPSGetConverged(EPS eps, int *nconv);
EPSGetEigenpair(EPS eps,int i,PetscScalar
*kr,PetscScalar *ki,Vec xr,Vec xi);
EPSDestroy(EPS eps);

First, the eigenproblem solver (EPS) context is created and the operator(s)
associated with the eigensystem are set, as well as the problem type. Then
various options are set for customized solution. After that, the program
solves the problem, retrieves the solution, and finally destroys the EPS
context.

The above function calls are very important and will be present in most
SLEPc programs. In the example source code ex1.c you will find other
functions apart from these. What do they do?

Playing with EPS Options

Now we are going to experiment with different options of the EPS object. A
full list of command-line options can be obtained by running the example
with the option -help.

To show information about the solver object:

% ex1 -eps_view

Note: This option internally calls the function EPSView. Alternatively, we
could include a direct call to this function in the source code. Almost all
command-line options have a related function call.
Note: All the command-line options related to the EPS object have the
-eps_ prefix.

This time, your output will include something like this

EPS Object:
 problem type: symmetric eigenvalue problem
 method: krylovschur
 extraction type: Rayleigh-Ritz
 selected portion of the spectrum: largest eigenvalues in magnitude
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum dimension of projected problem (mpd): 16
 maximum number of iterations: 100
 tolerance: 1e-07
 convergence test: relative to the eigenvalue
 estimates of matrix norms (constant): norm(A)=1
 IP Object:
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.707100)
 ST Object:
 type: shift
 shift: 0

This option is very useful to see which solver and options the program is
using.

Try solving a much larger problem, for instance with n=400. Note that in that
case the program does not return a solution. This means that the solver has
reached the maximum number of allowed iterations and the convergence
criterion was not satisfied. What we can do is either increase the number of
iterations or relax the convergence criterion.

% ex1 -n 400 -eps_max_it 400
% ex1 -n 400 -eps_tol 1e-3

Note that in the latter case the relative error displayed by the program is
significantly larger, meaning that the solution has only 3 correct decimal
digits, as expected.

It is possible to change the number of requested eigenvalues. Try the
following execution

% ex1 -n 400 -eps_nev 3

In this case, the program did not succeed to compute the two requested
eigenpairs. This is again due to the convergence criterion, which is satisfied
by some eigenpairs but not for all. As in the previous case, we could
increase further the number of iterations or relax the convergence criterion.

Another alternative is to increase the number of column vectors (i.e. the
dimension of the subspace with which the eigensolver works). This usually
improves the convergence behavior at the expense of larger memory
requirements.

% ex1 -n 400 -eps_nev 3 -eps_ncv 24

Note that the default value of ncv depends on the value of nev.

Try to set some of the above options directly in the source code by calling
the related functions EPSSetTolerances and EPSSetDimensions.
Modify and recompile the program. Use -eps_view to check that the
values are correctly set. Is it now possible to change these options from the
command-line? Does this change whether you place the calls before or
after the call to EPSSetFromOptions?

Convergence is usually bad when eigenvalues are close to each other,
which is the case in this example. In order to see what is happening while
the eigensolver iterates, we can use a monitor to display information
associated to the convergence of eigenpairs at each iteration:

% ex1 -eps_monitor

or

% ex1 -eps_monitor_all

Also, in some SLEPc installations, it is possible to monitor convergence
graphically with -eps_monitor_draw. For example, try this:

% ex1 -n 700 -eps_nev 5 -eps_ncv 35 -eps_monitor_draw_all -draw_pause .1

Note: The plot is drawn in an X11 pop-up window. So this requires that the
display is correctly exported.

Changing the Eigensolver

The convergence behavior for a particular problem also depends on the
properties of the eigensolver being used. SLEPc provides several
eigensolvers which can be selected in the source code with the function
EPSSetType, or at run time:

% ex1 -eps_nev 4 -eps_type lanczos

The following table shows some of the solvers available in SLEPc.

Solver Command-line Name Parameter

Krylov-Schur krylovschur EPSKRYLOVSCHUR

Generalized Davidson gd EPSGD

Jacobi-Davidson jd EPSJD

Lanczos with Explicit
Restart lanczos EPSLANCZOS

Arnoldi with Explicit Restart arnoldi EPSARNOLDI

Subspace Iteration subspace EPSSUBSPACE

Power / RQI power EPSPOWER

Lapack lapack EPSLAPACK

ARPACK arpack EPSARPACK

Note: The Lapack solver is not really a full-featured eigensolver but simply
an interface to some LAPACK routines. These routines operate in dense
mode with only one processor and therefore are suitable only for moderate
size problems. This solver should be used only for debugging purposes.

Note: The last one (ARPACK) may or may not be available in your system,
depending on whether it was enabled during installation of SLEPc. It
consists in an interface to the external ARPACK library. Interfaces to other
external libraries may be available as well. These can be used as any other
SLEPc native eigensolver.

Note: The default solver is krylovschur for both symmetric and
non-symmetric problems.

Exercise 2: Standard Non-Symmetric Eigenvalue Problem
In this exercise we are going to work with a non-symmetric problem. The
example solves the eigenvalue problem associated with a Markov model of a
random walk on a triangular grid. Although the matrix is non-symmetric, all
eigenvalues are real. Eigenvalues come in pairs with the same magnitude and
different signs. The values 1 and -1 are eigenvalues for any matrix size. More
details about this problem can be found at Matrix Market.

Compiling

Copy the file ex5.c [plain text] to your directory and add these lines to the
makefile

ex5: ex5.o chkopts
 -${CLINKER} -o ex5 ex5.o ${SLEPC_LIB}
 ${RM} ex5.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Build the executable with the command

% make ex5

Source Code Details

The example program is very similar to that in Exercise 1. The main
difference is that the problem is set to be non-symmetric with
EPSSetProblemType:

 ierr = EPSSetProblemType(eps,EPS_NHEP);CHKERRQ(ierr);

In this example we also illustrate the use of EPSSetInitialSpace.

Running the Program

Run the program requesting four eigenvalues.

% ex5 -eps_nev 4

The output will look like this:

Markov Model, N=120 (m=15)

 Number of iterations of the method: 4
 Solution method: krylovschur

 Number of requested eigenvalues: 4
 Stopping condition: tol=1e-07, maxit=100
 Number of converged approximate eigenpairs: 6

 k ||Ax-kx||/||kx||
 ----------------- ------------------
 1.000000 7.83449e-11
 -1.000000 1.62382e-09
 -0.904234 5.6707e-10
 0.904234 2.15187e-10
 -0.857143 1.70262e-08
 0.857143 9.2032e-09

You can see that the solver returns both positive and negative eigenvalues.

This is because largest magnitude eigenvalues are computed by default,
that is, internally the solver sorts the eigenvalue approximations according
to |λ|, and the same criterion is used for sorting the finally computed
eigenvalues.

Other criteria can be used, see EPSSetWhichEigenpairs for details. For
instance, for computing only the rightmost eigenvalues, try the following.

% ex5 -eps_nev 4 -eps_largest_real

Similarly, it is possible to request the smallest magnitude eigenvalues with
-eps_smallest_magnitude. The difference in that case is that the solver
needs much more iterations to converge. The justification is that in this
problem the smallest magnitude eigenvalues are located in the interior of
the spectrum, and computing interior eigenvalues is always harder as
explained next.

Computing Interior Eigenvalues

It is well known that computing eigenvalues located at the interior of the
spectrum is much more difficult than those in the periphery. We are going to
discuss different strategies available in SLEPc.

The general way of computing interior eigenvalues is to specify a target
value, around which the eigenvalues must be sought.

% ex5 -eps_nev 4 -eps_target 0.75

Note that apart from the target value, one should specify a sorting criterion
relative to the target (-eps_target_magnitude). However, this option can
be omitted because it is the default when a target is specified. The output is
in this case:

Markov Model, N=120 (m=15)

 Number of iterations of the method: 5
 Solution method: krylovschur

 Number of requested eigenvalues: 4
 Stopping condition: tol=1e-07, maxit=100
 Number of converged approximate eigenpairs: 4

 k ||Ax-kx||/||kx||
 ----------------- ------------------
 0.771298 1.06136e-08
 0.714286 8.58118e-09
 0.702317 1.75121e-08
 0.857143 1.65774e-09

We have obtained eigenvalues both on the left and on the right of the target

value τ=0.75, and they are sorted according to the distance to τ.

The number of iterations is higher than in the default case. The theory says
that Krylov methods (and other methods as well) approximate eigenvalues
from the periphery to the interior, meaning that before getting eigenvalues
closest to 0.75 the solver has to find out the eigenvalues from 0.75 to the
rightmost extreme. If we choose a target close to the extreme the number of
iterations will be small, and they will increase as τ is moved inside of the
spectrum. Therefore, this is not a good strategy because it will not be viable
for difficult problems.

Sometimes, an improvement may come from changing the way in which the
method extracts the spectral information from the built subspace; see
EPSSetExtraction for details. One such technique is called harmonic
extraction. Try the following:

% ex5 -eps_nev 4 -eps_target 0.75 -eps_harmonic

In this simple problem, harmonic extraction gives no benefit but in difficult
problems it may be a significant improvement, especially in combination
with preconditioned solvers (discussed later below).

A better solution may be to use a spectral transformation, but with several
considerations to take into account regarding cost.

Getting Started with Spectral Transformations

The general idea of the spectral transformation is to substitute the original
problem, Ax=λx, by another one, Tx=θx, in which the eigenvalues are
mapped to a different position but eigenvectors remain unchanged. With
this strategy, one can move interior eigenvalues to the periphery.

Each EPS object uses an ST object internally to manage the spectral
transformation. The following table shows the available spectral
transformations, which can be selected with the function STSetType or at
run time.

Spectral Transform Operator Command-line
Name Parameter

Shift of Origin A+σI shift STSHIFT

Spectrum Folding (A-σI)2 fold STFOLD

Shift-and-invert (A-σI)-1 sinvert STSINVERT

Cayley (A-σI)-1(A+τI) cayley STCAYLEY

Preconditioner K-1≈ (A-σI)-1 precond STPRECOND

Note: The default is to do shift of origin with a value σ=0. This was reported
by -eps_view in the previous example.
Note: The preconditioner is not really a spectral transformation like the rest.
It will be discussed later below.

The shift-and-invert spectral transformation can be used for computing
interior eigenvalues:

% ex5 -eps_nev 4 -eps_target 0.75 -st_type sinvert

Note: All the command-line options related to the ST object have the -st_
prefix.

With the above execution, the number of iterations is very small, but each
iteration is much more costly than in the previous cases because linear
systems must be solved to handle de inverted operator (the issue of how to
solve linear systems is discussed below). The value of the parameter σ (the
shift) is taken to be equal to τ (the target). Run with -eps_view to check
that it is indeed the case.

Try also with cayley, which is nearly equivalent. Also, the fold spectral
transformation can be used for computing interior eigenvalues (only in
symmetric problems) but it is usually less effective.

Handling the Inverses

In the table of spectral transformations shown above, there are some
operators that include the inverse of a certain matrix. These operators are
not computed explicitly in order to preserve sparsity. Instead, in the ST
object the multiplication by these inverses is replaced by a linear equation
solve via a KSP object from PETSc.

SLEPc allows us to pass options to this KSP linear solver object. For
instance,

% ex5 -eps_nev 4 -eps_target 0.75 -st_type sinvert -st_ksp_type preonly -st_pc_type lu

Note: In order to specify a command-line option related to the linear solver
contained in ST, simply add the -st_ prefix in front.

The options of the above example specify a direct linear solver (LU
factorization). This is what SLEPc does by default. This strategy is usually
called exact shift-and-invert. Its main drawback is that direct solvers are
more costly in terms of flops and storage and are less parallelizable.

An alternative is to do an inexact shift-and-invert, that is, to use an iterative
linear solver. The following line illustrates how to use an iterative solver

% ex5 -eps_nev 4 -eps_target 0.75 -st_type sinvert -st_ksp_type gmres
 -st_pc_type bjacobi -st_ksp_rtol 1e-12

Iterative linear solvers may fail to converge if the coefficient matrix is
ill-conditioned or close to singular. Also, the accuracy of the eigensolver
may be compromised if the iterative linear solver provides a solution far
from full working precision.

Note that in SLEPc it is extremely easy to switch between exact and inexact
schemes.

Preconditioned Eigensolvers

As mentioned above, the inexact shift-and-invert scheme is very sensitive to
the accuracy with which the linear systems are solved. This usually implies
using a very stringent tolerance (10-12 in the example) and makes it
impractical for difficult problems.

An alternative is to use a preconditioned eigensolver, such as those of
Davidson type: EPSGD and EPSJD. These solvers try to emulate the idea of
shift-and-invert but they are very robust with respect to bad accuracy (i.e.,
large tolerance) of the iterative linear solve.

Here is an example where Jacobi-Davidson is used:

./ex5 -eps_nev 4 -eps_target 0.75 -eps_type jd -st_type precond
 -st_ksp_type bcgsl -st_pc_type bjacobi -st_ksp_rtol 0.001

Note: The -st_type precond key can be omitted in this case, since it is
the default in all preconditioned eigensolvers.

Try adding -eps_harmonic to the above example. As mentioned before,
harmonic extraction is usually better when used in preconditioned solvers.

Exercise 3: Generalized Eigenvalue Problem Stored in a
File
In this exercise we are going to work with a generalized eigenvalue problem,
Ax=λBx. The example program loads two matrices A and B from a file and then
solves the associated eigensystem.

The matrices we are going to work with are BFW62A and BFW62B, which are
available at Matrix Market. This particular problem is non-symmetric. Some of
the eigenvalues (those of largest magnitude) come in complex conjugate pairs

while the rest are real.

Compiling

Copy the file ex7.c [plain text] to your directory and add these lines to the
makefile

ex7: ex7.o chkopts
 -${CLINKER} -o ex7 ex7.o ${SLEPC_LIB}
 ${RM} ex7.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Build the executable with the command

% make ex7

Source Code Details

This example uses the PETSc function MatLoad to load a matrix from a file.
The two matrix files are specified in the command line. Note that these files
have been converted from Matrix Market format to PETSc binary format.

Compare the source code of the example program with the previous ones.
Note that, in this case, two matrix objects are passed in the
EPSSetOperators function call:

 ierr = EPSSetOperators(eps,A,B);CHKERRQ(ierr);

Running the Program

Run the program with the following command line:

% ex7 -f1 ${SLEPC_DIR}/src/mat/examples/bfw62a.petsc
 -f2 ${SLEPC_DIR}/src/mat/examples/bfw62b.petsc

Run the program to compute more than one eigenpair. Use the following
option to plot the computed eigenvalues:

% ex7 -f1 ${SLEPC_DIR}/src/mat/examples/bfw62a.petsc
 -f2 ${SLEPC_DIR}/src/mat/examples/bfw62b.petsc
 -eps_type subspace -eps_nev 6 -eps_plot_eigs -draw_pause -1

Note: The plot is drawn in an X11 pop-up window. So this requires that the
display is correctly exported.

Spectral Transformations in Generalized Problems

The following table shows the expressions of the operator in each of the
available spectral transformations in the case of generalized problems. Note
that both matrices A and B are involved.

Spectral Transform Operator

Shift of Origin B-1A+σI

Spectrum Folding (B-1A-σI)2

Shift-and-invert (A-σB)-1B

Cayley (A-σB)-1(A+τB)

Preconditioner K-1≈ (A-σB)-1

In the case of generalized problems, the shift-and-invert transformation
does not represent a cost penalty with respect to the simpler shift of origin,
since in both cases the inverse of a matrix is required.

% ex7 -f1 ${SLEPC_DIR}/src/mat/examples/bfw62a.petsc
 -f2 ${SLEPC_DIR}/src/mat/examples/bfw62b.petsc
 -eps_target 0 -st_type sinvert

The above execution computes the eigenvalues closest to the origin. Use a
target near the left end of the spectrum to compute the largest magnitude
eigenvalues

% ex7 -f1 ${SLEPC_DIR}/src/mat/examples/bfw62a.petsc
 -f2 ${SLEPC_DIR}/src/mat/examples/bfw62b.petsc
 -eps_target -250000 -st_type sinvert

Preconditioned Eigensolvers

As hinted above, generalized eigenproblems have the drawback that in the
default mode (shift of origin) one of the matrices have to be (implicitly)
inverted. However, preconditioned eigensolvers do not have this limitation,
and may be able to solve the problem with just a preconditioner or a few
iterations of an iterative linear solver.

Here is an example with Generalized Davidson:

% ex7 -f1 ${SLEPC_DIR}/src/mat/examples/bfw62a.petsc
 -f2 ${SLEPC_DIR}/src/mat/examples/bfw62b.petsc
 -eps_type gd -eps_nev 6

Try the above example also with -eps_target and -eps_harmonic.

Exercise 4: Singular Value Decomposition
In this exercise we turn our attention to the Singular Value Decomposition
(SVD). Remember that in real symmetric (or complex Hermitian) matrices,
singular values coincide with eigenvalues, but in general this is not the case.
The SVD is defined for any matrix, even rectangular. Singular values are always
non-negative real values.

This example works also by reading a matrix from a file. In particular, the matrix
to be used is related to a 2D reaction-diffusion model. More details about this
problem can be found at Matrix Market.

Compiling

Copy the file ex14.c [plain text] to your directory and add these lines to the
makefile

ex14: ex14.o chkopts
 -${CLINKER} -o ex14 ex14.o ${SLEPC_LIB}
 ${RM} ex14.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Build the executable with the command

% make ex14

Running the Program

In order to run the program, type the following

% ex14 -file $SLEPC_DIR/src/mat/examples/rdb200.petsc

You should get an output similar to this

Singular value problem stored in file.

 Reading REAL matrix from a binary file...
 Number of iterations of the method: 3
 Solution method: cross

 Number of requested singular values: 1

 Stopping condition: tol=1e-07, maxit=100
 Number of converged approximate singular triplets: 2

 sigma residual norm
 --------------------- ------------------
 35.007519 1.40809e-10
 34.104187 2.3481e-09

Source Code Details

The way in which the SVD object works is very similar to that of EPS.
However, some important differences exist. Examine the source code of the
example program and pay attention to the differences with respect to EPS.
After loading the matrix, the problem is solved by the following sequence of
function calls:

SVDCreate(MPI_Comm comm,SVD *svd);
SVDSetOperator(SVD svd,Mat A);
SVDSetFromOptions(SVD svd);
SVDSolve(SVD svd);
SVDGetConverged(SVD svd, int *nconv);
SVDGetSingularTriplet(SVD svd,int i,PetscReal
*sigma,Vec u,Vec v);
SVDDestroy(SVD svd);

First, the singular value solver (SVD) context is created and the matrix
associated with the problem is specified. Then various options are set for
customized solution. After that, the program solves the problem, retrieves
the solution, and finally destroys the SVD context.

Note that the singular value, sigma, is defined as a PetscReal, and that
the singular vectors are simple Vec's.

SVD Options

Most of the options available in the EPS object have their equivalent in
SVD. A full list of command-line options can be obtained by running the
example with the option -help.

To show information about the SVD solver, add the -svd_view option:

% ex14 -file $SLEPC_DIR/src/mat/examples/rdb200.petsc -svd_view

Note: All the command-line options related to the SVD object have the
-svd_ prefix.

Your output will include something like this

SVD Object:
 method: cross

 transpose mode: explicit
 selected portion of the spectrum: largest
 number of singular values (nsv): 1
 number of column vectors (ncv): 16
 maximum number of iterations: 100
 tolerance: 1e-07
 EPS Object:
 problem type: symmetric eigenvalue problem
 method: krylovschur
 extraction type: Rayleigh-Ritz
 selected portion of the spectrum: largest real parts
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum dimension of projected problem (mpd): 16
 maximum number of iterations: 100
 tolerance: 1e-07
 convergence test: relative to the eigenvalue
 estimates of matrix norms (constant): norm(A)=1
 IP Object:
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.707100)
 ST Object:
 type: shift
 shift: 0
 Using a shell matrix
 IP Object:
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.707100)

The output shows all the options that are susceptible of being changed,
either from the command line or from the source code of the program: the
method, the portion of the spectrum (largest or smallest singular values),
the number of singular values (nsv), etc.

Try to change some of the values, for instance:

% ex14 -file $SLEPC_DIR/src/mat/examples/rdb200.petsc -svd_nsv 10
 -svd_ncv 40 -svd_smallest

The "transpose mode" refers to whether the transpose of matrix A is being
built explicitly or not (see SVDSetTransposeMode for an explanation).

Note that in the sample output above, the SVD object contains an EPS
object. This only happens in some SVD solver types, as detailed below.

Changing the Singular Value Solver

SLEPc provides several solvers for computing the SVD, which can be
selected in the source code with the function SVDSetType, or at run time:

% ex14 -file $SLEPC_DIR/src/mat/examples/rdb200.petsc -svd_type trlanczos

The following table shows the list of SVD solvers available in SLEPc.

Solver Command-line Name Parameter

Cross Product cross SVDCROSS

Cyclic Matrix cyclic SVDCYCLIC

Lanczos with Explicit
Restart lanczos SVDLANCZOS

Lanczos with Thick Restart trlanczos SVDTRLANCZOS

Lapack lapack SVDLAPACK

Note: The Lapack solver is not really a full-featured singular value solver but
simply an interface to some LAPACK routines. These routines operate in
dense mode with only one processor and therefore are suitable only for
moderate size problems. This solver should be used only for debugging
purposes.

Note: The default solver is cross.

The first two solvers, cross and cyclic, are not real methods
implemented in the SVD module, but are two convenient ways of solving
the SVD problem by making use of the eigensolvers available in the EPS
module. In those two cases, the SVD object manages an EPS object
internally, whose parameters can be set as desired (typically only the
method). For example:

% ex14 -file $SLEPC_DIR/src/mat/examples/rdb200.petsc -svd_type cyclic
 -svd_eps_type lanczos

Exercise 5: Problem without Explicit Matrix Storage
In many applications, it may be better to keep the matrix (or matrices) that define
the eigenvalue problem implicit, that is, without storing its nonzero entries
explicitly. An example is when we have a matrix-vector routine available. SLEPc
allows easy management of this case. This exercise tries to illustrate it by
solving a standard symmetric eigenproblem corresponding to the Laplacian
operator in 2 dimensions in which the matrix is not built explicitly.

Compiling

Copy the file ex3.c [plain text] to your directory and add these lines to the
makefile

ex3: ex3.o chkopts
 -${CLINKER} -o ex3 ex3.o ${SLEPC_LIB}
 ${RM} ex3.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Build the executable with the command

% make ex3

Source Code Details

PETSc provides support for matrix-free problems via the shell matrix type.
This kind of matrices is created with a call to MatCreateShell, and their
operations are specified with MatShellSetOperation. For basic use of
these matrices with EPS solvers only the matrix-vector product operation is
required. In the example, this operation is performed by a separate function
MatLaplacian2D_Mult.

Running the Program

Run the program without any spectral transformation options. For instance:

% ex3 -eps_type subspace -eps_tol 1e-9 -eps_nev 8

Now try running the program with shift-and-invert to get the eigenvalues
closest to the origin

% ex3 -eps_target 0.0 -st_type sinvert

Note that the above command yields a run-time error. Observe the
information printed on the screen and try to deduce the reason of the error.
In this case, the error is due to the fact that SLEPc tries to use a direct
linear solver within the ST object, and this is not possible unless the matrix
has been created explicitly as in previous examples.

There are more chances to have success if an inexact shift-and-invert
scheme is used. Try using an interative linear solver without
preconditioning:

% ex3 -eps_target 0.0 -st_type sinvert -st_ksp_rtol 1e-10
 -st_ksp_type gmres -st_pc_type none

The above example works. However, try with a nonzero target:

% ex3 -eps_target 2.0 -st_type sinvert -st_ksp_rtol 1e-10
 -st_ksp_type gmres -st_pc_type none

As you may see, at some point of the execution inside SLEPc, the
execution fails because the ST object tries to make a copy of the problem
matrix. However, the copy operation has not been defined in our shell
matrix.

This matrix copy can be avoided by changing the default ST matmode (see
STSetMatMode for details). For example, in order to force ST to work with a
shell matrix itself (thus avoiding copying the matrix) one can execute

% ex3 -eps_target 2.0 -st_type sinvert -st_ksp_rtol 1e-10
 -st_ksp_type gmres -st_pc_type none -st_matmode shell

The last example is much slower. This is because the iterative linear solver
takes a lot of iterations to reach the required precision (add
-st_ksp_monitor to monitor the convergence of the linear solver). In
order to alleviate this problem, a preconditioner should be used. However, a
powerful preconditioner such as ILU cannot be used in this case, for the
same reason a direct solver is not available. The only possibility is to use a
simple preconditioner such as Jacobi. Try running the last example again
with -st_pc_type jacobi. Note that this works because the
MATOP_GET_DIAGONAL has been defined in our program.

Some of the above difficulties can be avoided by using a preconditioner
eigensolver, as in the examples shown in previous exercises.

Exercise 6: Parallel Execution
The objective of this exercise is to run an example program with different
number of processors to see how execution time is reduced. This time, we are
going to solve a standard eigensystem Ax=λx with the matrix loaded from a file.
In particular, the matrix we are going to use is QC2534. It is a complex matrix of
order 2534 arising from a quantum chemistry application (more details can be
found at Matrix Market).

Compiling

Copy the file ex4.c [plain text] to your directory and add these lines to the
makefile

ex4: ex4.o chkopts
 -${CLINKER} -o ex4 ex4.o ${SLEPC_LIB}
 ${RM} ex4.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents

a tab.

Build the executable with the command (optimized complex version)

% make PETSC_ARCH=rs6000_sp_O_complex ex4

Source Code Details

This example program is very similar to that of exercise 3. It uses the
PETSc function MatLoad to load a matrix from a file. The matrix file is
specified in the command line.

Running the Program

In order to run this example, you will need the file qc2534.petsc. Locate it
in the file system and then run the program with the command

% ex4 -file qc2534.petsc

For execution with more than one processor:

% poe ex4 -procs 2 -file qc2534.petsc

Check the output of the program. It should be the same as with one
processor.

Try using the -log_summary option to have a look at the profiling
information collected by PETSc and SLEPc. For instance, check the size
and number of MPI messages.

% poe ex4 -procs 2 -file qc2534.petsc -log_summary

Try to find out how much time was spent is solving the eigenvalue problem.
Is there a significant reduction when we increase the number of
processors?

Instrumenting the Source Code

If we are just interested in knowing the time used by the eigensolver, then it
may be better to let our example program inform us. With the function
PetscGetTime, it is possible to obtain the current time of day (wall-clock
time) in seconds. Edit the source code and add two calls to this function just
before and after the EPSSolve call, as in the following fragment of code

 ierr = PetscGetTime(&t1);CHKERRQ(ierr);

 ierr = EPSSolve(eps);CHKERRQ(ierr);
 ierr = PetscGetTime(&t2);CHKERRQ(ierr);
 ierr = PetscPrintf(PETSC_COMM_WORLD," Elapsed Time: %f\n",t2-t1);

Also you must add the definition of the two new variables

 PetscLogDouble t1,t2;

Recompile the program with

% make PETSC_ARCH=rs6000_sp_O_complex ex4

Run it with one, two and four processors checking the time spent by the
solver

% poe ex4 -procs 1 -file qc2534.petsc
% poe ex4 -procs 2 -file qc2534.petsc
% poe ex4 -procs 4 -file qc2534.petsc

Exercise 7: Use of Deflation Subspaces
The term deflation refers to the use of the knowledge of one or more eigenpairs
to find other eigenpairs. For instance, most eigensolvers try to approximate a
number of eigenpairs and, as soon as one of them has converged, they deflate it
for better approximating the other ones. Another case is when one eigenpair is
known a priori and one wants to use this knowledge to compute other
eigenpairs. SLEPc supports this by means of deflation subspaces.

This example illustrates the use of deflation subspaces to compute the smallest
nonzero eigenvalue of the Laplacian of a graph corresponding to a 2-D regular
mesh. The problem is a standard symmetric eigenproblem Ax=λx, where A =
L(G) is the Laplacian of graph G, defined as follows: Aii = degree of node i, Aij =

-1 if edge (i,j) exists in G, zero otherwise. This matrix is symmetric positive
semidefinite and singular, and [1 1 ... 1]T is the eigenvector associated with the
zero eigenvalue. In graph theory, one is usually interested in computing the
eigenvector associated with the next eigenvalue (the so-called Fiedler vector).

Compiling

Copy the file ex11.c [plain text] to your directory and add these lines to the
makefile

ex11: ex11.o chkopts
 -${CLINKER} -o ex11 ex11.o ${SLEPC_LIB}
 ${RM} ex11.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Build the executable with the command

% make ex11

Source Code Details

This example computes the smallest eigenvalue by setting
EPS_SMALLEST_REAL in EPSSetWhichEigenpairs. An alternative would
be to use a shift-and-invert spectral transformation with a zero target to
compute the eigenvalues closest to the origin, or to use harmonic extraction
with a zero target.

By specifying a deflation subspace (the one associated to the eigenvector
[1 1 ... 1]T) with the function EPSAttachDeflationSpace, the
convergence to the zero eigenvalue is avoided. Thus, the program should
compute the smallest nonzero eigenvalues.

Running the Program

Run the program simply with

% ex11

For the case of using a spectral transformation, the command line would be:

% ex11 -eps_target 0.0 -eps_target_real -st_type sinvert
 -st_ksp_rtol 1e-10 -st_ksp_type gmres -st_pc_type jacobi

Note that a shift-and-invert spectral transformation should always be used
in combination with EPS_TARGET_MAGNITUDE or EPS_TARGET_REAL.

And for the case of harmonic extraction:

% ex11 -eps_target 0.0 -eps_target_real -eps_harmonic

Exercise 8: Quadratic Eigenvalue Problem
Now we are going to focus on the solution of quadratic eigenvalue problems with
QEP solvers. In this case, the problem to be solved is formulated as
(λ2M+λC+K)x=0. In our simple example, M is the identity matrix, C is the zero
matrix, and K is the 2-D Laplacian.

Compiling

Copy the file ex16.c [plain text] to your directory and add these lines to the
makefile

ex16: ex16.o chkopts
 -${CLINKER} -o ex16 ex16.o ${SLEPC_LIB}
 ${RM} ex16.o

Note: In the above text, the blank space in the 2nd and 3rd lines represents
a tab.

Build the executable with the command

% make ex16

Running the Program

Run the program without arguments and see the output:

Quadratic Eigenproblem, N=100 (10x10 grid)

 Number of iterations of the method: 9
 Solution method: linear

 Number of requested eigenvalues: 1
 Stopping condition: tol=1e-07, maxit=100
 Number of converged approximate eigenpairs: 2

 k ||(k^2M+Ck+K)x||/||kx||
 ----------------- -------------------------
 -0.000000+2.799638 j 2.75404e-07
 -0.000000-2.799638 j 2.75404e-07

This problem has purely imaginary eigenvalues coming in conjugate pairs.

Source Code Details

The QEP object is used very much like EPS or SVD, as can be seen in the
source code. Here is a summary of the main function calls:

QEPCreate(MPI_Comm comm,QEP *qep);
QEPSetOperators(QEP qep,Mat M,Mat C,Mat K);
QEPSetProblemType(QEP qep,QEPProblemType type);
QEPSetFromOptions(QEP qep);
QEPSolve(QEP qep);
QEPGetConverged(QEP qep, int *nconv);
QEPGetEigenpair(QEP qep,int i,PetscScalar
*kr,PetscScalar *ki,Vec xr,Vec xi);
QEPDestroy(QEP qep);

First, the solver context (QEP) is created and the three problem matrices
are specified. Then various options are set for customized solution. After
that, the program solves the problem, retrieves the solution, and finally
destroys the context.

QEP Options

Most of the options available in the EPS object have their equivalent in
QEP. A full list of command-line options can be obtained by running the
example with the option -help.

To show information about the QEP solver, add the -qep_view option:

QEP Object:
 problem type: general quadratic eigenvalue problem
 method: linear
 selected portion of the spectrum: largest eigenvalues in magnitude
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum dimension of projected problem (mpd): 16
 maximum number of iterations: 100
 tolerance: 1e-07
 scaling factor: 2.82843
 linearized matrices: implicit
 companion form: 1
 EPS Object:
 problem type: generalized non-symmetric eigenvalue problem
 method: krylovschur
 extraction type: Rayleigh-Ritz
 selected portion of the spectrum: largest eigenvalues in magnitude
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum dimension of projected problem (mpd): 16
 maximum number of iterations: 100
 tolerance: 1e-07
 convergence test: relative to the eigenvalue
 estimates of matrix norms (constant): norm(A)=1 , norm(B)=1
 IP Object:
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.707100)
 ST Object:
 type: shift
 shift: 0
 Using a shell matrix
 Associated KSP object

 KSP Object:(qep_st_)
 type: gmres
 GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonaliza
 GMRES: happy breakdown tolerance 1e-30
 maximum iterations=10000, initial guess is zero
 tolerances: relative=1e-05, absolute=1e-50, divergence=10000
 left preconditioning
 using PRECONDITIONED norm type for convergence test

 PC Object:(qep_st_)
 type: jacobi
 linear system matrix = precond matrix:
 Matrix Object:
 type=shell, rows=200, cols=200

 IP Object:
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.707100)

Note: All the command-line options related to the QEP object have the
-qep_ prefix.

The output shows many objects. The reason is that the default QEP solver
performs a linearization, that is, it creates a generalized eigenvalue problem
to be solved with an EPS object.

Try changing some of the values, for example:

% ex16 -qep_nev 4 -qep_ncv 24 -qep_smallest_magnitude -qep_tol 1e-5

Choosing the Solver Method

Several quadratic solvers are available, which can be selected in the source
code with the function QEPSetType, or at run time:

% ex16 -qep_type qarnoldi

The following table shows the list of QEP solvers available in SLEPc.

Solver Command-line Name Parameter

Linearization linear QEPLINEAR

Quadratic Arnoldi qarnoldi QEPQARNOLDI

Note: The default solver is linear.

As mentioned before, the linear solver performs a linearization of the
quadratic eigenproblem, resulting in a generalized eigenproblem. This
linearization can be done in several ways, see the Users Manual for details.

One possibility is to choose between the two companion forms:

% ex16 -qep_type linear -qep_linear_cform 2

Since in this problem all matrices are symmetric, it is also possible to

formulate a symmetric linearization by choosing the corresponding problem
type:

% ex16 -qep_type linear -qep_hermitian

In the linear solver it is also possible to tune any of the EPS options,
including those corresponding to ST and the linear solvers. For instance:

% ex16 -qep_type linear -qep_st_ksp_type bcgs -qep_st_pc_type jacobi

Depending on the linear solution method, it may be necessary to add the
option -qep_linear_explicitmatrix in order to build the matrices of
the linearization explicitly and be able to construct, e.g., preconditioners.

